Radiation-induced apoptosis: effects of cell age and dose fractionation.
نویسندگان
چکیده
The cell cycle dependence of radiation-induced apoptosis was measured using mitotically synchronized REC:myc(ch1) and Rat1:mycb cells. Cells in S and G2 phases were more susceptible; the apoptotic fraction was about 0.7-0.8 as compared to about 0.4 for G1 cells at a dose of 10 Gy. Two-dimensional cytofluorimetric analysis of cells, pulsed-labeled with bromodeoxyuridine and then irradiated with 10 Gy, showed both G1 and G2 blocks (6-8 h) for REC:myc(ch1) cells but only G2 block for Rat1:mycb cells. Consistent with these results, wild-type p53 and WAF1 (or p21), known to play a role in G1 delay, was induced by radiation in REC:myc(ch1) but not in Rat1:mycb cells. The cell cycle dependence of radiation-induced apoptosis and the absence of a G1 block for Rat1:mycb cells led to the prediction and observation of the novel "inverse split-dose effect," i.e., a radiation dose given in two equal halves separated by a few hours yielded a higher level of apoptosis relative to that resulting from the same total dose given all at once. This effect is due to cell cycle progression from G1 to the more sensitive S-G2 phase during the interval between the split doses. In contrast, the inverse split-dose effect for apoptosis is absent for REC:myc(ch1), due presumably to the radiation-induced G1 delay. Parallel split-dose experiments, but using clonogenic survival as end points, show recovery for REC:myc(ch1) cells but not for Rat1:mycb cells, reflecting the influence of split-dose, radiation-induced apoptosis.
منابع مشابه
Tumour radiobiology beyond fractionation
Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...
متن کاملThe role of dose fractionation in the level of Radiation- Induced Bystander Effect in QU-DB Cells
Introduction: Radiation effects induced in non-irradiated cells are termed radiation- induced bystander effects (RIBE). The present study intends to examine the RIBE response of QU-DB bystander cells to first, second and third radiation fractions and compare their cumulative outcome with an equal, single acute dose. Materials and Methods: This experimental ...
متن کاملEffects of quercetin on ionizing radiation-induced cellular responses in HepG2 cells
Background: Quercetin has been reported to modulate cell proliferation and apoptosis. The present study aimed at identifying whether treatment of ionizing radiation (IR) combined with quercetin induces apoptosis in HepG2 cells. Materials and Methods: HepG2 cells were plated at an appropriate density according to each experimental scale and irradiated with 1, 5 and 10 Gy gamma-rays from a 60Co s...
متن کاملStudy of crocin & radiotherapy-induced cytotoxicity and apoptosis in the head and neck cancer (HN-5) cell line
Malignant tumors of head and neck carcinomas are the sixth most common type of cancer. Current systemic therapies for cancer show side effects in normal tissues and short-term efficacy due to drug resistance. Consequently, there is much interest in identifying new drugs for cancer treatment. Crocin (an active ingredient of saffron) has been shown to have cytotoxic effects on cancer cell lines. ...
متن کاملStudy of crocin & radiotherapy-induced cytotoxicity and apoptosis in the head and neck cancer (HN-5) cell line
Malignant tumors of head and neck carcinomas are the sixth most common type of cancer. Current systemic therapies for cancer show side effects in normal tissues and short-term efficacy due to drug resistance. Consequently, there is much interest in identifying new drugs for cancer treatment. Crocin (an active ingredient of saffron) has been shown to have cytotoxic effects on cancer cell lines. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 55 22 شماره
صفحات -
تاریخ انتشار 1995